Kinetics of the Acid-Catalyzed Isomerization of Phenylbutenes in Glacial Acetic Acid

R. S. Schwartz, ${ }^{1 \mathrm{a}}$ H. Yokokawa, and E. W. Graham*
Contribution from the Department of Chemistry, University of California, Los Angeles, California 90024. Received June 7, 1971

Abstract

The kinetics of the isomerization of the cis-and trans-2-phenyl-2-butenes and 2-phenyl-1-butene, catalyzed by p-toluenesulfonic acid in glacial acetic acid, was studied at 50°. All six rate constants for the isomerization reactions between the three isomers were determined. Unlike the results of a previous study of these reactions ${ }^{1 \mathrm{~b}}$ the results presented in this paper are in agreement with the principle of microscopic reversibility. With the assumption that the same carbonium ion was generated by proton addition to each olefin, the proportion of each olefin produced by the carbonium ion was calculated to be 65% cis, 2% trans, and 33% terminal. Under identical conditions, the carbonium ion produced by the removal of the acetate ion from 2-phenyl-2-butyl acetate gave 67% cis, 2% trans, and 31% terminal. These data imply that the conformationally different phenylbutyl carbonium ions equilibrate more rapidly than the ions lose protons.

The isomerization of the cis- and trans-2-phenyl-2butenes and 2 -phenyl-1-butene, catalyzed by p toluenesulfonic acid in glacial acetic acid, was studied by Cram and Sahyun. ${ }^{16}$ The kinetics of the isomerization was studied by measuring the rate of disappearance of each isomer, obtaining second-order rate constants (first order in p-toluenesulfonic acid and first order in olefin) for the disappearance of the initial olefin. The reaction can be represented by the following quasiunimolecular reactions when the p-toluenesulfonic acid concentration is held constant

where A designates 2 -phenyl-1-butene, \mathbf{B} designates trans-2-phenyl-2-butene, and C designates cis-2-phenyl-2-butene. The rate constants for the disappearance of each isomer are

$$
\begin{align*}
& k_{\mathrm{a}}=k_{\mathrm{ab}}+k_{\mathrm{ac}} \\
& k_{\mathrm{b}}=k_{\mathrm{ba}}+k_{\mathrm{bc}} \tag{1}\\
& k_{\mathrm{c}}=k_{\mathrm{ca}}+k_{\mathrm{cb}}
\end{align*}
$$

The principle of microscopic reversibility requires that at equilibrium the rate of reaction in one direction along any path be equal to the rate in the opposite direction along that same path. ${ }^{2}$ For the above reaction scheme, this leads to the following relations

$$
\begin{align*}
k_{\mathrm{ab}}[\mathrm{~A}]_{\mathrm{eq}} & =k_{\mathrm{ba}}[\mathrm{~B}]_{\mathrm{eq}} \\
k_{\mathrm{bc}}[\mathrm{~B}]_{\mathrm{eq}} & =k_{\mathrm{cb}}[\mathrm{C}]_{\mathrm{eq}} \tag{2}\\
k_{\mathrm{ac}}[\mathrm{~A}]_{\mathrm{eq}} & =k_{\mathrm{ca}}[\mathrm{C}]_{\mathrm{eq}}
\end{align*}
$$

(1) (a) National Science Foundation Undergraduate Research Participant; (b) D. J. Cram and M. R. V. Sahyun, J. Amer. Chem. Soc., 85, 1257 (1963).
(2) Cf. K. J. Laidler, "Chemical Kinetics," 2nd ed, McGraw-Hill, New York, N. Y., 1965, pp 110-111.
where $[. . .]_{\text {eq }}$ represents the equilibrium concentration. Using the six equations, 1 and 2 , the six rate constants can be determined. Using the results of Cram and Sahyun, ${ }^{1 \mathrm{~b}}$ the solution of the six equations yields negative values for two of the rate constants, a physically unreal result. This indicates that either the triangular reaction scheme involving quasiunimolecular steps is incorrect or the rate data are incorrect.

The kinetics of this isomerization was reinvestigated to obtain each of the six rate constants independently of eq 2. These equations could then be used as a test of the mechanism.

Experimental Section

The three olefins were prepared as in the previous work ${ }^{1 b}$ and stored over nitrogen at 0° in the dark. The glacial acetic acid solvent was redistilled under nitrogen (bp 117-119). Acetic anhydride (2%) was added to the solvent to ensure dryness. The concentration of p-toluenesulfonic acid present in the stock catalyst solutions was determined by the method used by Cram and Sahyun, titration of the solution with sodium acetate in acetic acid.

Kinetic studies were made by sealing the olefin solution (~ 0.2 M) under nitrogen in an ampoule with a rubber stopper having a self-sealing membrane through which aliquots could be removed by means of a hypodermic needle. The ampoule was placed in an oil bath at 50° regulated to $\pm 0.01^{\circ}$. Aliquots removed at appropriate time intervals were added to 5 ml of water and promptly extracted with 2 ml of pentane. The pentane extracts were washed with 10% sodium hydroxide solution and then analyzed by gas chromatography. The gas chromatograph was a Loenco Model 15 B with a 6 -ft column packed with 4-methyl-4-nitropimelonitrile, 21.9% by weight on firebrick, maintained at 130°. Using synthetic mixtures of the olefins it was determined that the response of the detector was the same for all three isomers; thus, the fraction of total olefin present as any isomer was determined from the ratio of the peak area for that isomer to the total peak areas of the three isomers.

Results

Integration of the rate equations yields the following equations for the fractions of each isomer (where A, B, and C are the fractions of isomers A, B, and C , respectively)

$$
\begin{align*}
& A=A_{\text {eq }}+A_{1} e^{-\lambda_{1} t}+A_{2} e^{-\lambda_{2} t} \\
& B=B_{\text {eq }}+B_{1} e^{-\lambda_{1} t}+B_{2} e^{-\lambda_{2} t} \tag{3}\\
& C=C_{\text {eq }}+C_{1} e^{-\lambda_{1} t}+C_{2} e^{-\lambda_{2} t}
\end{align*}
$$

Table I. Analyses of Reaction Mixtures. Acid-Catalyzed Olefin Isomerizations in Glacial Acetic Acid at $50.00 \pm 0.01^{\circ}$

With A as the starting material, the coefficients are

$$
\begin{aligned}
& A_{1}=\left[\lambda_{2}\left(1-A_{\mathrm{eq}}\right)-k_{\mathrm{a}}\right]\left(\lambda_{2}-\lambda_{1}\right)^{-1} \\
& A_{2}=\left[-\lambda_{1}\left(1-A_{\mathrm{eq}}\right)+k_{\mathrm{a}}\right]\left(\lambda_{2}-\lambda_{1}\right)^{-1} \\
& B_{1}=\left[k_{\mathrm{ab}}-\lambda_{2} B_{\mathrm{eq}}\right]\left(\lambda_{2}-\lambda_{1}\right)^{-1} \\
& \left.B_{2}=\left[-k_{\mathrm{ab}}+\lambda_{1} B_{\mathrm{eq}}\right] \lambda_{2}-\lambda_{1}\right)^{-1} \\
& C_{1}=\left[k_{\mathrm{ac}}-\lambda_{2} C_{\mathrm{eq}}\right]\left(\lambda_{2}-\lambda_{1}\right)^{-1} \\
& C_{2}=\left[-k_{\mathrm{ac}}+\lambda_{1} C_{\mathrm{eq}}\right]\left(\lambda_{2}-\lambda_{1}\right)^{-1}
\end{aligned}
$$

From these equations are obtained the following relations

$$
\begin{align*}
k_{\mathrm{a}} & =A_{1} \lambda_{1}+A_{2} \lambda_{2} \\
k_{\mathrm{ab}} & =-\left(B_{1} \lambda_{1}+B_{2} \lambda_{2}\right) \tag{5}\\
k_{\mathrm{ac}} & =-\left(C_{1} \lambda_{1}+C_{2} \lambda_{2}\right)
\end{align*}
$$

Similar expressions are obtained with B and C as the starting material.

The results of product analyses at various times are given in Table I. The procedure used to determine the
rate constants was to fit the data to eq 3 and then to calculate the rate constants from eq 5.

The method for fitting the data to eq 3 was the following. Since the data were taken at equal time intervals, τ, the equation to be fitted can be rewritten

$$
\begin{equation*}
y_{n}=A_{n}-A_{\mathrm{eq}}=A_{1} x_{1}^{n}+A_{2} x_{2}^{n} \tag{6}
\end{equation*}
$$

where A_{n} is the fraction after n time intervals; $x_{1}=$ $\exp \left(-\lambda_{1} \tau\right) ; x_{2}=\exp \left(-\lambda_{2} \tau\right) ; t=n \tau$. Suppose x_{1} and x_{2} are roots of the quadratic equation: $x^{2}+\rho x+$ $\sigma=0$. Then, $\sigma y_{n}+\rho y_{n+1}+y_{n+2}=0$. Using the experimental values for the y_{n} 's, the constants ρ and σ were determined by applying a least-squares procedure to the preceding equation. Having determined ρ and σ, the quadratic equation was solved for the two roots, x_{1} and x_{2}, which are then used to evaluate λ_{1} and λ_{2}. Using x_{1} and x_{2}, a least-squares procedure was applied to eq 6 to determine A_{1} and A_{2}.

The values of the rate constants are listed in Table II. The uncertainties are expressed as the standard deviations derived from the least-squares procedures.

Unlike the previous work, ${ }^{1}$ no significant difference was found between the second-order rate constants obtained using different concentrations of p-toluenesulfonic acid, 0.098 and 0.0112 M .

Discussion

The relationships derived from the principle of microscopic reversibility, eq 2 , can be verified by comparing ratios of rate constants with ratios of equilibrium fractions: $\quad k_{\mathrm{ab}} / k_{\mathrm{ba}}=5.2 \pm 0.4, B_{\mathrm{eq}} / A_{\mathrm{eq}}=5.26 ; k_{\mathrm{bc}} / k_{\mathrm{cb}}=$ $5.1 \pm 0.4, C_{\mathrm{eq}} / B_{\mathrm{eq}}=5.14 ; k_{\mathrm{ac}} / k_{\mathrm{ca}}=27 \pm 1, C_{\mathrm{eq}} / A_{\mathrm{eq}}=$ 27.1. This good agreement shows that the data are consistent with the triangular reaction scheme presented earlier.

If the assumption is made that addition of a proton to the cis, trans, and terminal olefins produces the same carbonium ion, the mechanism can be written

Define $f_{\mathrm{a}}, f_{\mathrm{b}}$, and f_{c} to be the fractions of terminal, trans, and cis olefins formed, respectively, by loss of a proton from the carbonium ion. These fractions are related to the rate constants by the following expressions: $f_{\mathrm{b}} / f_{\mathrm{a}}=k_{\mathrm{cb}} / k_{\mathrm{ca}}, f_{\mathrm{c}} / f_{\mathrm{a}}=k_{\mathrm{bc}} / k_{\mathrm{ba}}, f_{\mathrm{c}} / f_{\mathrm{b}}=k_{\mathrm{ac}} / k_{\mathrm{ab}}$. Using these equations and the condition: $f_{\mathrm{a}}+f_{\mathrm{b}}+f_{\mathrm{c}}=1$,

Table II. Second-Order Rate Constants at 50°

	In $0.098 M \mathrm{TsOH}$ $10^{4} k, M^{-1} \mathrm{sec}^{-1}$	In $0.0112 M \mathrm{TsOH}$ $10^{4} k, M^{-1} \mathrm{sec}^{-1}$
k_{sb}	5.6 ± 0.2	5.5 ± 0.3
k_{sc}	180 ± 5	182 ± 8
k_{bs}	1.07 ± 0.08	1.1 ± 0.2
k_{bc}	2.15 ± 0.08	2.2 ± 0.2
k_{ca}	6.6 ± 0.2	6.7 ± 0.3
$k_{\text {ob }}$	0.42 ± 0.01	0.41 ± 0.02

the fractions are calculated to be $0.32,0.02$, and 0.66 for $f_{\mathrm{a}}, f_{\mathrm{b}}$, and f_{c}, respectively.

Under the same conditions, the 2-phenyl-2-butyl cation produced by the removal of the acetate ion from 2-phenyl-2-butyl acetate gave $31 \% \mathrm{~A}, 2 \% \mathrm{~B}$, and 67% C. ${ }^{1}$ This agreement indicates that both reactions are passing through the same intermediate. This result is contrary to the conclusion reached by Cram and Sahyun; however, their calculations of the fractions were based on rate constants which were inconsistent with the principle of microscopic reversibility. In fact, a calculation of the fractions using their results and the principle gives the following values of $f_{\mathrm{a}}, f_{\mathrm{b}}$, and f_{c} : $-2.18,1.46$, and 1.72 , respectively. The negative value of one fraction and the values for the fractions larger than unity reflect once again the inconsistency of the data with a triangular reaction scheme involving quasiunimolecular steps.

The main difference between the present work and the work of Cram and Sahyun is the procedure used for determining rate constants. The latter workers defined an instantaneous second-order rate constant for each experimental point. These rate constants were found to change with time due to back reaction. To correct for the back reactions, plots of the logarithms of the instantaneous rate constants as a function of time were extrapolated to zero time. However, the time interval for this extrapolation was large. Treating the data obtained in this work in this manner and extrapolating over a similar time interval gave poor results in comparison with the results obtained by fitting the integrated rate equation.

We conclude that the rate constants of the previous authors were in error and that the reaction is adequately described by a reaction mechanism with a single carbonium ion intermediate. Also, we have demonstrated the use of the principle of microscopic reversibility to test the consistency of a proposed reaction scheme with experimentally derived rate constants.

Acknowledgment. The authors thank Professor D. J. Cram for valuable discussions.

